门式刚架结构设计,118个问题总结所有知识点!

  • A+
所属分类:减隔震百科

52、网架支座的弹簧刚度如何取值?
答:弹簧刚度的取值在0^无穷大之间。也就是说,有可能是完全没有约束,也有可能就是个理想的支座。当然刚度的准确取值就非常重要了。直接影响结构的安全与经济。一个具体的例子是,铰接于两排混凝土柱项的柱面网壳,当混凝土柱短粗时,或有连梁/拉杆时,网壳更多的表现拱的特性。当和网壳刚度相比柱子比较纤弱时,网壳可能表现出曲梁的特性。比较可靠的方法是整体建模,将网架与下部结构- -起分析。- -般对于点支承的网架,下部结构(一般是砼柱)弹簧刚度可按悬臂柱计算,试算时可适当的将砼柱断面减小(刚度小),或加大荷载,这样用钢量会稍大。若实际砼柱断面大于等于试算断面,网架偏于安全,反之网架偏于不安全

53、钢屋盖厂房砼柱的柱顶水平位移需要控制吗?
答:结构体系如果是框架结构的话就必须满足1/550的位移要求,这是很重要的。

54、吊车梁的加劲肋为什么和下翼缘空了50M左右为什么不象普通梁那样和上下翼缘顶紧施焊?
答:焊接会破坏钢材的延性,降低疲劳强度,防止吊车梁疲劳破坏。吊车梁是下翼缘受拉,而且承受吊车动力荷载,-般不允许其它构件与下翼缘焊接。腹板加劲肋只加劲腹板和上翼缘(受压翼缘),与下翼缘焊接的意义也不大。吊车梁- -般是承受动荷载的,而且是承受反复荷载的影响,容易产生疲劳,横向加劲肋在下翼缘处断开不焊,是为了避免焊缝因疲劳而产生裂缝,降低承载能力.另外避免加劲肋的焊缝与翼缘焊缝相交出现应力集中在<钢结构设计规范>中条纹说明里有详细的解说,其规定中间横向加劲肋的下端宜在距受拉翼缘50^ 100mm处断开,与其腹板的连接焊缝不宜在肋下端起落弧.主要还是考虑了吊车梁的受力特性吊车梁的疲劳破坏-般是从受拉区开裂开始.腹板的连接焊缝在肋下端采用饶角焊或围焊或回焊等其他方式可减少由于焊接在腹板上引起疲劳裂纹.规定中间横向加劲肋的下端宜在距受拉翼缘50^100mm处断开,主要也是考虑吊车梁的疲劳破坏避免过多的焊缝相交产生应力集中,在下翼缘与腹板的连接处,加劲肋还要切角.比较准确。可减少由于焊接在腹板上引起疲劳裂纹。主要也是考虑吊车梁的疲劳破坏。

55、通常腹板在受压时会发生失稳可以理解,在剪力作用下为什么失稳?
答:虽然剪力在刚构件中不属于主要应力,但H型钢属于薄壁型钢,由于腹板较为薄弱,因此在薄弱地带也有可能发生”失稳“现象,准确的说是局部失稳问题,局部达到屈服。取单元体进行研究,若只受剪应力,则主拉应力、主压应力与水平方向成45°角,正是这个主压应力使得腹板被”压“失稳。一句话,失稳总是由于受压引起的。

56、吊车梁所承受的荷载?
答:吊车在吊车梁上运动产生三个方向的动力荷载:竖向荷载、横向水平荷载和沿吊车梁纵向的水平荷载。纵向水平荷载是指吊车刹车力,其沿轨道方向由吊车梁传给柱间支撑,计算吊车梁截面时不予考虑。横向水平荷载应等分于桥架的两端,分别由轨道上的车轮平均传至轨道,其方向与轨道垂直,并考虑正反两个方向的刹车情况。对于悬挂吊车的水平荷载应由支撑系统承受,可不计算。手动吊车及电动葫芦可不考虑水平荷载。计算重级工作制吊车梁及其制动结构的强度、稳定性以及连接(吊车梁、制动结构、柱相互间的连接)的强度时,由于轨道不可能绝对平行、轨道磨损及大车运行时本身可能倾斜等原因,在轨道上产生卡轨力,因此钢结构设计规范规定应考虑吊车摆动引起的横向水平力,此水平力不与小车横行引起的水平荷载同时考虑。吊车梁应该能够承受吊车在使用中产生的荷载。竖向荷载在吊车梁垂直方向产生弯矩和剪力,水平荷载在吊车梁上翼缘平面产生水平方向的弯矩和剪力。吊车梁一般设计成简 支梁,设计成连续梁固然可节省材料,但连续梁对支座沉降比较敏感,因此对基础要求较高。

57、疲劳破损时,讲到疲劳断面时,“ 当构件应力较小时,扩展区所占的范围较大,而当构件应力很大时,扩展区就较小。”怎样理解,为什么应力大的时候反而扩展区会小呢?
答:对于同一个构件,疲劳裂纹护展区越大,则断裂区越小;反之,则断裂区越大。金属的疲劳可以划分为三个阶段,疲劳裂纹形成,疲劳裂纹扩展和疲劳断裂。疲劳裂纹形成时,构件不会发生断裂,因为构件还有“剩余面积”可以承受作用力,随着裂纹的扩展,剩余面积越来越小,所能承受的力也越来越小,直到不能承受外力时,出现断裂,此时的剩余面积就是断裂区。因此,循环应力越小,断裂时的剩余面积也就越小,即断裂区越小;反之,则越大。

58、高层民用建筑钢结构规范上有一条是对于大震作用下层间侧移延性比的规定,什么是结构层间侧移延性比?
答:层间侧移延性比是指结构层间最大侧移与其弹性侧移之比,其值不得超过以下限值:1、全钢结构:框架体系3.5,框架偏心支撑3.0,框架中心支撑2.5; 2、钢骨结构:型钢一混凝土框架2.5, 钢一混凝土混合2.0。 .

59、何为钢结构的延性?
答:结构、构件或截面的延性是指从屈服开始至达到最大承载力或达到以后而承载力还没有显著下降期间的变形能力,也就是说,延性是反映结构、构件或截面的后期变形能力。延性差的结构、构件或截面,其后期变形能力小,在达到其最大承载力后会突然发生脆性破坏,这是要避免的。因此,在工程结构设计中,不仅要满足承载力要求,还要满足一定的延性要求,其目的在于: (1) 有利于吸收和耗散地震能量,满足抗震设计方面的要求。对于有抗震设防的结构,抗震性能主要取决于结构所能吸收的地震能量,它等于结构承载力和变形能力的乘积,就是说,结构的耐震能力是由承载力和变形能力两者共同决定的。因此,在抗震设计中,应考虑和利用结构的变形能力(延性)以及耗散地震能量的能力。(2) 防止脆性破坏。(3) 在超静定结构中,能更好的适应地基不均匀沉降以及温度变化等特殊情况。(4) 使超静定结构能够充分的进行内力重分布,便于施工,节约钢材。

60、1、 工字型截面梁在竖向力作用下产生弯矩,弯矩作用下梁上(中和轴以外)任- -点会,产生水平剪力,水平剪力会产生剪应力T 1。2、工字型截面梁在竖向力作用下,梁腹板会产生竖向剪应力τ 2 ;问1、梁腹板任一点的剪力是τ 1与τ 2的矢量和吗? 2、为什么在一般计算剪应力的时候只按竖向剪应力τ 2来验算抗剪强度?
答:腹扳就是仅有T 2。T 1是翼缘水平剪应力。工字形的梁腹扳是主要承受剪力的部位。而且,也只有T 2存在于腹扳.之中。中和轴以外产的扭矩而形成的剪力,是要验算抗扭的。对于双轴对称截面,按剪力流理论,截面任-一出的剪应力为T =VS/It, 翼缘中剪应力的合力互相抵消,所以腹板中剪应力的合力就是整个截面的剪应力合力。所以--般计算剪应力的时候只按竖向剪应力τ2来验算抗剪强度。

61、制作地脚螺栓的圆钢长度不够,是否可以采取焊接措施?
答:地脚螺栓与预埋板之间采用坡口塞焊缝,在工程中经常用到,普遍的看法是可以的。但地脚螺栓不够长,要焊接加长是不可以的,因为通常地脚螺栓钢材的可焊接性能较差,焊接后产生很大残余应力和焊缝缺陷,受拉时容易在焊缝处发生脆断,很危险。实验表明,有些就是在焊缝处发生断裂,从而导致断裂后的上段被拉出,起不到锚固作用。

62、强度应力与稳定应力之间的区别?
答: 1、我们通常所说的应力主要是指强度方面,它包括正应力、剪应力它是针对一个构件的某个截面、某个点。稳定是针对整个构件以及整个体系。对于受弯简直梁--个构件来说,当截面的受压翼缘的最大正应力σ x大于它的临界应力σ cr时,梁就会发生侧向弯曲和扭转,并丧失继续承载的能力,2、强度计算采用净截面,因为应力跟截面有关,而稳定计算针对整个构件,因此局部的削弱可忽略,所以用毛截面。3、稳定一般有个临界点,过了这个临界点,构件(体系)就从一个稳定状态变化到一一个不稳定状态。这个临界点对应一个临界弯距(临界应力)简直受弯梁整体稳定系数φb就是根据这个临界应力推导而来的。整体稳定计算公式的真正意义应该这样看σ x=Mx/Wx<σ cr=φ bf。所以说认为“计算所得的si gma2>sigma1"是不对的; 4、所以说:应变片所测的永远是正应力,无论是在什么状态下。当然在失稳状态下,应力比较复杂(比如三向应力,因为此时,存在弯扭)。

63、为什么有的地方审图要求钢屋盖必须要在山墙设--道钢梁,而不能直接用山墙承重?
答:应该设置,依据见建筑抗震设计规范P989.1.1-7条,“厂房的同一结构单元内,不应采用不同的结构型式;厂房端部应设屋架,不应采用山墙承重;厂房单元内不应采用横墙与排架混合承重”,不同的形式的结构,振动特性不同,材料强度不同,侧移刚度不同。在地震作用下,往往由于荷载,位移,强度的不均衡,而造成结构破坏。山墙承重和中间横墙承重的单层混凝土柱厂房和端砖壁承重的天窗架,在唐山地震中均有较重破坏,为此,厂房的一个结构单元内,不宜采用不同的结构型式。

64、构件的承载力与构件截面承载力的区别?
答:在混凝土结构设计中,我们一般会选取构件中最薄弱的截面作为控制截面,此时构件的承载力与截面承载力的关系就象木桶与木板的关系:构件的承载力取决于构件中最薄弱截面的承载力。钢结构设计中,同样要选取控制截面.但是钢结构设计中还要考虑非常重要的一一个方面,就是结构的稳定问题。因此,此时构件的承载力并不完全取决于最薄弱截面的承载力,还要受制于构件的稳定条件。同样,在钢-砼组合结构中,也要考虑到钢与混凝土连接的问题,此时构件承载力也不完全取决于薄弱截面的承载。

65、埋入地下的柱脚是否要喷漆?
答:埋入地下的柱脚不用喷油漆,钢柱的喷漆,主要的目的是保护钢柱,避免生锈.而混凝土对钢柱的保护作用远远大于油漆;且采用插入式基础连接是为了刚性连接,做了油漆就不能保证钢板与混凝土的粘接性。

66、什么是塑性铰?
答:塑性铰就是认为一个结构构件在受力时出现某一点相对面的纤维屈服但未破坏,则认为此点为-塑性铰,这样- -个构件就变成了 两个构件加一个塑性铰,塑性铰两边的构件都能做微转动。就减少了-一个约束。计算时内力也发生了变化,当截面达到塑性流动阶段时,在极限弯矩值保持不变的情况下,两个无限靠近的相邻截面可以产生有限的相对转角,这种情况与带铰的截面相似。因此,当截面弯矩达到极限弯矩时,这种截面称为塑性铰。塑性铰与普通铰的相同之处是铰两边的截面可以产生有限的相对转角。塑性铰与普通铰的两个重要区别为: 1) 普通铰不能承受弯矩,而塑性铰能承受极限弯矩; 2)普通铰是双向铰,即可以围绕普通铰的两个方向产生自由转动,而塑性铰是单向的。

67、挠度与位移是否是同一概念?
答: 1。 位移是将整个构件当成一个有质量的质点来研究,然后研究这个质点在空间是怎么运动的。2。变形是对这个构件的各个截面进行研究,如果这个截面上的点发生了位移,我们就说它发生了变形。3。挠度是描述弯曲变形时而引入的一个物理量。

68、钢结构规范中角焊缝的抗剪强度“比如(Q345:200) ”高于对接焊缝抗剪强度“(Q345:t≤16:f=180) ”,为什么?
答:焊缝金属本身的强度较高,这是大量试验的结果,有资料说,焊接相当于电炉炼钢,质量好,所以强度高。角焊缝抗抗剪强度是试验得来的,反映焊缝金属本身的强度。而对接焊缝(一、二级)的强度实际上是母材强度,试验时是母材破坏,焊缝并不坏。角焊缝的抗剪强度大于对接焊缝的抗剪强度也是有理由的。对于对接焊缝,我们认为它完全等效于母材。这是偏于安全的。因为对接焊缝通常用在重要构件的制作上。角焊缝的强度是理论结合试验的经验性公式。而且实际上焊缝的强度是要高于母材的。所以角焊缝的强度要大

69、结构振型的意思是什么?
答:振型是指体系的- -种固有的特性。它与固有频率相对应,即为对应固有频率体系自身振动的形态。每一-阶固有频率都对应一种振型。实际结构的振动形态并不是一-个规则的形状,而是各阶振型相叠加的结果。工程中常见的前三种振型:第一振型来的时候,在相同的时间里,房子晃的次数少,但幅度大;第二振型来的时候,在相同的时间里,房子晃的较快,幅度略小。第三振 型来的时候,比第二振型又表现的晃动快一些。自第- -振型到第三振型,其地震周期由大到小。(1、结构自振频率数=结构自由度数量;2.每一个结构自振频率对应一个结构振型; 3.第一自振频率叫基频,对应第一振型; 4.结构每一振型表示结构各质点的一-种运动特性:各质点之间的位移和速度保持固定比值: 5.要使结构按某- -振型振动, 条件是:各质点之间的初位移和初速度的比值应具有该振型的比值关系; 6.根据多质点体系自由振动运动微分方程的通解,在一般初始条件下,结构的振动是由各主振型的简谐振动叠加而成的复合振动;7.因为振型越高,阻尼作用造成的衰减越快,所以高振型只在振动初始才比较明显,以后则逐渐衰减,因此,建筑抗振设计中仅考虑较低的几个振型: )手里拿一根细长竹竿,慢悠悠来回摆动,竹竿形状呈现为第一振型; 如果你稍加大摆动频率,竹竿形状将呈现第二振型;如果你再加大摆动频率,竹竿形状将呈现第三、第四-.振型;从而形象地可知:第一振型很容易出现,高频率振型你要很费力(即输入更多能量)才能使其出现;能量输入供应次序优先给底频率振型;从而你也就可以理解为什么结构抗震分析只取前几个振型就能满足要求。

70、 何为强柱弱梁?
答:强柱弱梁是要使塑性铰首先在梁中出现,而不要在柱中出现。如果塑性铰在柱中出现,,结构并未变成几何可变体系,只是失去了继续承受水平荷载的能力。1.强柱弱梁、强剪弱弯、强节点强锚固,这些都是为了实现延性框架; 2.柱子是压弯构件,轴力又很大,所以柱子的延性很小,框架的延性主要还是由梁来提供的,而梁的塑性铰一般是 出现在端部,这样梁的延性又归结为梁端截面的名义受压区高度;3.强剪弱弯也是为了实现延性框架,因为剪切破坏是脆性破坏,弯曲破坏是延性破坏。为了实现强剪弱弯,采取的措施是梁端柱端的设计剪力是根据梁柱端的抗弯承载力来确定,保证弯曲破坏先于剪切破坏。虽然设计的目的是为了强柱弱梁,但是实际结构柱子不可避免会出现塑性铰,柱子也要需要一-定的延性。 对于柱子承受压、弯、剪的共同作用,既要防止剪切破坏还要防止小偏压破坏,这样就通过控制剪跨比来防止剪切破坏,控制轴压比防止小偏压破坏。总之,上述几点的最终目的是要实现结构的延性。

72、 什么是结构的模态分析?
答:模态是振动系统的一-种固有振动特性,模态一般包含频率、 振型、阻尼..。 然而,为了便于对模态进行称呼,就以模态频率的大小进行排队,这种排队的顺序往往就是所谓的“阶”。振动系统各阶模态的分析研究。这种振动系统是指多自由度系统、连续弹性体振动系统或复杂结构物。对应于无阻尼系统各阶主振动(固有振动),各点位移具有某种驻定形态,这些点同相或反相也通过平衡位置,又同相或反相地到达极端位置,构成实模态。振动系统最低阶固有频率的模态称基本模态。模态分析可解决线性系统的如下问题:①对系统各阶模态进行响应分析,叠加各响应波形可求得系统各点的总响应;②求出各阶模态的最大响应值,再作适当组合,可求得系统某点的最大响应值;③在激励频率已知的受迫振动中,分析系统能否发生共振;④表示系统的动态特性,指导人们调整系统的某些参数(如质量、阻尼率、刚度等),使动态特性达到最优,或使系统的响应控制在所需范围内。模态分析在工程中应用甚广,例如:①对航天器进行模态分析,以显示其在发射过程和空中飞行环境中的响应,从而判断它是否会损坏。②对悬索桥进行模态分析,可知它在风激励下是否会发生共振,经计算响应后还可预估寿命。③对发动机外壳进行模态分析,有助于研究振动产生噪声的成分和提供噪声的比重。④对滚珠轴承进行模态分析,有助于识别故障及发生振动和噪声的原因。- -些大阻尼、非比例阻尼的复杂结构物(如高阻尼复合材料结构物),系统的响应不能按主模态分解,系统各点即不同相也不反相,振动无驻定形态,节点位置不固定,模态矢量不是实数而是复数。对具有上述特征的振动系统,不能用实模态理论及其分析方法而须用复模态理论及其分析方法研究系统的响应问题。

73么是负刚度?
答: -根压杆,由于作用有轴力,它实际上的抗侧刚度有所减小,它刚度的减小,是由于轴力产生的,所以可以认为轴力产生了负刚度。一个简单的门]式刚架,比如说中间加有摇摆柱,摇摆柱就是负刚度。本来刚架本身有一-定的刚度,不加摇摆柱时,结构刚度很好,钢柱稳定计算也可以算过去。但是加上摇摆柱,原来能算过去的钢柱稳定现在反而不够了。摇摆柱不仅不能给结构提供刚度,还需要结构给它提供刚度。这时我们说摇摆柱就是负刚度。

74、 在设计中强剪弱弯是怎么体现的?
答:“强剪弱弯”是抗震设计中对结构延性的基本要求之-一,钢筋混凝土受弯构件有两种破坏可能:弯曲破坏和剪切破坏。发生弯曲破坏时,钢筋屈服后形成塑性铰,从而具有塑性变形能力,构件表现出很好的延性。而发生剪切破坏时,其破坏形态是脆性的或延性很小,不能满足延性的设计要求。因此,抗震设计时要求构件的抗剪能力大于抗弯能力,即强剪弱弯。在设计方面主要体现在《混凝土规范》11.3.2、11.3.7、11.4.4、 11. 4.15(在《抗规》和《高规》里也有同样的规定)。截面太小首先配筋不便,并且如果梁高太小会造成钢筋分布太近,不能充分发挥作用;其次很容易造成梁的刚度不够。对于梁的剪切破坏主要有三种: 1、 斜压破坏,主要发生在腹部很薄的T型、工字形截面梁内,对于有腹筋梁,当腹筋配置过多腹筋超筋也产生这种破坏,这种梁的跨高比很小; 2、斜拉破坏,这种梁跨高比很大,少筋破坏; 3、剪切破坏即跨高比居中的情况。

75、为什么扭转比平动震害大
答:平动产生的应力基本是均匀的,而扭转产生的应力不是均匀分布的,角部应力集中。况且实际使用中荷载(质量)分布不均匀,会加重扭转的。
最大位移和最大层间位移的区别?
答:最大位移和最大层间位移都是相对的概念,- -般建筑的最大位移发生在顶端,故最大位移- -般指建筑物项端相对于建筑物底部的侧移,最大层间位移是指相邻两层之间的最大相对侧移;限制最大层间位移可能是为了防止出现局部较大的薄弱层,以防建筑物刚度沿高度方向有较大的突变;限制最大位移则主要处于安全和正常使用等方面的考虑。

76、刚度是什么意思?
答:刚度是指:单位变形条件下,结构或构件在变形方向所施加的力的大小。在结构静力或动力分析时需要用到。如用位移法分析结构内力时要用到刚度矩阵,计算地震作用或风振影响时需要用到结构的刚度参数。还有在设计动力机器基础时也需要用到结构刚度参数。刚度是和材料特性及截面特性直接相关

77、阻尼比与结构所受到的地震作用有何关系?
答: 1)首先是关于阻尼比对结构自振周期的影响:阻尼比对振动系统的自振周期是有影响的,这可以从有阻尼单自由度系统的自振周期wD的表达式中明显可见: wD=w (1-ζ 2) 1/2, 但由于实际结构系统的阻尼比ξ通常都小于0.1,所以有阻尼系统和无阻尼系统的自振周期w近似相等,实际计算中通常按无阻尼系统的自振周期确定。至于wenjin提到“分别输入阻尼比为0.05,和0.5做弹塑性时程分析,结果是周期不变”,并非证实阻尼比对结构的自振周期毫无影响,实际上这是因为程序通常都是按照无阻尼系统来计算结构的自振周期(原因如上),所以不管你输入多大的阻尼比,计算得到的自振周期永远都是一样。2)阻尼对结构的影响主要反应在其对结构振动幅值(非振型)的消减方面。增大阻尼,可以大大降低结构的变形幅值;反之相反。3) 阻尼的概念是指振动系统在振动过程中所有耗散振动能量的机制。因此,实际结构系统的阻尼是十分复杂的,包括由于材料分子之间的摩擦引起的内阻尼机制、构件之间支承与连接部位的摩擦机制、振动时与周围介质(大气等)的相互作用引起的能量耗散机制、振动时基础与地基相互作用引起的能量耗散机制等。所有这些机制显然均与结构的质量分布和刚度分布无关,但与结构的材质有关系。

78、 什么是地震动?
答:地震动是指由震源释放出来的地震波引起的地面运动。这种地面运动可以用地面质点的加速度、速度或位移的时间函数表示。地震动的显著特点是其时程函数的不规则性。现阶段的研究强烈依赖强地观测。

79、房开推拉门,推拉门开小门能不能达到防火疏散要求?
答:现行规范中强条规定,对厂房建筑疏散门不能用推拉门,即使是推拉门上开小门也不行的。所以要用推拉门,只能另外设置平开门作为疏散用。

80、什么是风振系数?什么是阵风系数?
答:风振系数主要反映的是风引起的结构振动影响的大小,是风荷载引起的动力反应。阵风系数考虑的是直接承受风荷载作用的围护结构的风反应增大系数,只用于计算围护结构。
81、PKPM平面内计算长度要不要调整?

答:就我所知:在SIS平面分析程序中,平面内计算长度系数默认为(-1),是这样的,(-1)表示由程序自动确定计算长度系数,如果手工修改为一个大于0的数,则程序就不再自动确定计算长度系数,而采用手工输入值作为计算长度系数。如果保持程序默认(-1),则程序自动确定计算长度的方法是这样的: 1、对于门式刚架,且选择门规验算时,平面内计算长度按门规侧移刚度方法程序自动确定; 2、对于框架结构,选择钢结构规范验算,则按钢结构规范线刚度比方法程序自动确定; 3、对于有吊车作用的排架结构,选择钢结构规范验算,对于排架柱,按钢结构规范阶形柱的计算长度确定方法程序自动确定,非排架柱按线刚度比方法确定。以下情况下需要考虑手工修改: 1、 带夹层的门式刚架,对于夹层柱; 2、 超过二阶以上的排架柱;3、有侧移的框架,柱的上下梁都为铰接情况。

82、 sts-satwe 计算时,负弯矩调幅系数取多少?
答:负弯矩调幅系数主要针对砼结构中的连续次梁,对主梁不允许调幅。在sts用satwei分析时,最好将次梁做成铰接,因此此系数对计算结果影响不大。

83、剪重比怎么控制?
答:剪重比超限就是意味着计算的地震作用小于《抗规》5. 2.5条的下限,宜适当加大结构的截面尺寸,提高其刚度,使地震作用不至于太小而不安全;当地震作用超出其上述限值太多时,应适当减小结构刚度,使结构设计比较经济合理。规定剪重比的下限,就是为了提高结构在水平地震作用的安全性,让结构能承担大于该薄弱楼层按刚度分配的剪力值,不至于过早的出现塑性铰。

84、 sIS计算砼柱钢梁结构,选用门规和钢规砼柱配筋,为何相差很大?
答:用SIS计算钢梁砼柱结构,选用门刚规范与钢结构规范,砼柱配筋相差很大,是柱的计算长度的差异引起的。

85、 用sIS设计混凝土柱加变截面钢梁的单层工业厂房?
答:可以按sTS中的排架结构设计。此时屋面如果是采用轻型钢结构材料,可以按门刚架工程进行变截面钢梁的设计;程序对于混凝土柱自动按混凝土规范计算。对于这种结构型式,关键是做好混凝土柱和钢梁的节点铰接设计,这个连接节点目前需由用户自行设计;有条件的话建议在钢梁下部设置一-根单拉杆来释放钢梁对柱顶产生的较大水平力。假如还要进行混凝土柱的施工图绘制工作,在计算分析完以后,如果作用有吊车,需进行“PK->排架绘图“,如果没有吊车作用,只要选择”PK->框架绘图“就可绘制柱施工图了。

86、STS 软件中的“吊车梁跨度”和“相邻吊车梁跨度”?
答:即柱距,是吊车梁的跨度。

87、 带支撑的钢结构框,SAIWE 算得的底层柱底内力?答:目前SATWE输出的底层柱底内力未包含与柱脚连接的支撑构件内力。在sTS钢框架节点连接设计程序中可以自动完成支撑构件内力到柱脚节点内力的转换。如果必须要进行人工柱脚节点设计,建议另建一一个计算模型并在最底层再增加一-个很矮的标准层,形成- -段短柱得到合并后的柱脚内力设计值。

88、 目前STS门型柱间支撑计算?
答:目前在“墙面设计”模块中还不能计算。可以在sTS二维计算程序中单独建模分析。

89、新版sTS计算中“变截面柱腹板高厚比不满足允许值”的提示,允许值文本文件显示56. 45?
答: STS从2004年4月版本开始根据规范改进了变截面柱腹板高厚比允许值计算方法。程序首先判断变截面柱是否满足门式刚架规程6. 1.1条第6款中腹板高度变化率是否小于60mm/m的要求,如果不满足则按入W=0. 8及该条第7款计算变截面拄腹板高厚比允许值,如果采用Q345钢则允许值变为56. 45。

广告也精彩
kdmin

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: